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ABSTRACT

A design technique for analytically generating a leading
edge slat which will induce the modulating field required to match
a specified pressure distribution on the nose of an elliptical airfoil
was developed. This planar potential flow solution can be readily
generalized to the design of slats to prevent boundary-layer sepa-
ration at the nose of an arbitrary airfoil. The technique is described
as semi-inverse because the singularity representation for the slat
is constrained so that only realistic slat shapes will be generated.

The elliptical airfoil is mapped to a half-plane. In this
domain, the slat is represented by a finite series of distributed
singularities on an inclined chord line which is placed along a zero
order nose flow streamline. These distributed singularities cor-
respond to the singular and regular camber and thickness modes
of thin airfoil theory. A suitable slat chord location in the half-
plane is selected by examination of the distribution of the specified
modulating velocity. For a fixed slat location, the slat-induced
velocity field can be written explicitly in terms of the unknown
series coefficients. A least squares matching to the specified
modulating field is used to select the coefficients. The velocity
distribution along the chord line is integrated to determine the slat
surface streamlines which are then transformed back to the ellipse
plane.

The digital computer program for the semi-inverse solution

can be executed rapidly. Once an appropriate slat chord location in
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the half-plane has been selected, an accurate matching of the speci-
fied pressure distribution on the airfoil can be achieved. The airfoil
nose flow calculated by the semi-inverse solution agrees very
closely with the flow computed by the Douglas-Neumann direct
solution for the same slat geometry.

The airfoil nose flow is very sensitive to the distribution
of camber and thickness along the chord line. In some test cases,
a modified semi-inverse solution was required in which the mini-
mum aéceptable slat thickness was prescribed and a restricted
inversion solution was conducted to select the camber mode coeffi-
cients required to match the specified modulating field. For a thin
airfoil with a severe nose suction peak, a small, thin, highly-

cambered slat which is located close'fo the airfoil nose is desirable.
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NOMENCLATURE
BI slat singularity distribution mode coefficient
<, slat chord in half-plane
3 radius of airfoil circle
f1 slat midchord height above real axis in half-plane
fZ slat midchord offset from origin in half-plane
hi half-plane coordinate Xi3 of the ith matching station
i as subscript, index corresponding to the ith matching station
k6 slat inclination with respect to real axis in half-plane
R0 ellipse nose radius

S= s+it. slat plane coordinates

U onset flow velocity in ellipse plane

influence coefficient corresponding to the Ith slat singu-
larity distribution mode

W = x3+iy3 half-plape coordinates

W slat-induced velocity at hi in half-plane

il
w.o specified modulating velocity at hi in half-plane
W'iz biased specified modulating velocity at hi in half-plane
W3 main flow velocity at hi in half-plane
W4 specified velocity at hi in half-plane
W.g offset velocity at hi in half-plane

Z = xl+iy1 ellipse plane coordinates
z = x2+iy2 circle plane coordinates
a ellipse angle of attack

I

0 basic ellipse circulation, no slat
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NOMENCLATURE (Cont'd)

slat circulation

s
c compensating circulation required on ellipse when slat
is added
I't total ellipse circulation

slat circle plane variable
maximume-thickness-to-chord ratio of ellipse

maximum-thickness-to-chord ratio of slat in slat plane
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I. INTRODUCTION

A leading edge slat is an auxiliary airfoil located ahead of
the nose of the main airfoil to prevent separation of the airfoil
boundary layer near the leading edge. Usually employed in conjunc-
tion with trailing edge flaps, a leading edge slat raises the maximum
lift coefficient of the airfoil by delaying the onset of nose stall as the
angle of attack increases. The circulation around the heavily loaded
slat superimposes a backflow component on the high-speed flow
around the airfoil nose, thereby lowering the peak velocity and
decreasing the pressure gradient behind the minimum pressure
point. Therefore, the leading edge slat is, in a sense, a boundary
layer control device, because the slat alters the pressure gradient
history experienced by the main airfoil boundary layer.

The concept of the ''slotted wing'' was initially developed by
Lachmann and Handley Page and was widely used during the 1920's
on outer wing sections to prevent tip stalling and incipient spin.
Fixed leading edge slats are still employed in some STOL aircraft
designed only for low speed operation, and a typical configuration
is shown in Figure 1-A (1, Fig. 10).

Prior to World War II, extensive wind tunnel tests of various
configurations of fixed '"auxiliary airfoils'' were conducted by the
National Advisory Committee for Aeronautics. A typical configu-
ration evaluated by Weick and Sanders (2) is shown in Figure 1-B.
Thick airfoil sections which have broad nose velocity peaks and
large slats with chords of 15 to 25 percent of the main airfoil chord

were used. These fixed slat configurations represented a
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compromise between maximum low-speed lift and minimum cruise
drag. In the limited experimental parameter studies, the ratio
(Ci /CD . ) was optimized.
max min

As aircraft cruise speeds increased, retractable slat designs
were developed. Because thin airfoil sections develop high nose
suction peaks at the lift coefficients required for takeoff and for
landing approach, small, highly-cambered slats located close to
the nose of the main airfoil are required to prevent separation.

The NACA 641A212 airfoil with leading edge slat and slotted flap
tested by Quinn (3) is a typical example of retractable slat design
circa 1947, and is shown in Figure 1-C. Without boundary layer
suction on the main airfoil, the addition of the slat increased the
maximum lift coefficient by . 48 to 3. 30, and, with suction at 40
percent of chord, AC, = .74 was obtained. Current retractable
designs, such as the slr:ta};n the DC-9 Series 30, are much smaller
and closer to the airfoil nose than the earlier configurations, but
the lines of such current designs are proprietary and therefore
unavailable for publication. For comparison, the slat configuration
P70 designed by the semi-inverse technique of this thesis is shown
in Figure 13.

The NACA experiments demonstrated that the performance
of a slatted airfoil was highly sensitive to slat shape and position.
This sensitivity to slat geometry is due to the large local velocity
gradients in the highly curved flow field around the nose of an airfoil

operating at a high lift coefficient. Because of the impracticality

of wind tunnel testing of a full range of slat chords and camber and
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thickness distributions, experimental "optimization' of a slat design
was and still is generally limited to the determination of the best
1o‘cation for a slat of fixed shape. In the typical test series conducted
by Quinn (3), the slat trailing edge location required to maximize
CL was determined for three slat orientations.
max

Before the advent of digital computers, theoretical analysis
of leading edge slats was generally limited to planar-potential-flow
direct solutions by conformal mappings for a few special slat and

airfoil shapes having convenient transformations. In a survey article

in Boundary Layer and Flow Control, Lindfield (4) describes several

of these direct solutions which were published in foreign journals.
In Lachmann's 1923 solution, the slat was represented by a lattice
of point vortices and the main airfoil by a Joukowski section.
Golubev's solution was similarly restricted to Joukowski sections,
but Strassl's complete mapping solution employed the Kdrmdn-
Trefftz transformation which permits a finite trailing edge angle
on the main airfoil. Golubev's direct solution incorporated a laminar
boundary-layer analysis by the Pohlausen method to predict whether
separation would occur under the pressure gradients imposed by the
potential flow solution including a point vortex representing a slat.
Since large digital computers are now so readily available,
a number of fully nonlinear, direct solution techniques such as
the Douglas-Neumann method (5) have been developed. These nu-
merical techniques provide highly accurate potential flow solutions
for a fixed geometry. The direct problem, the solution for the

pressure distribution on a slat and airfoil of arbitrarily specified
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shape, can be regarded as solved.

However, in current design practice, the inverse problem
is of equally great importance. A thin wing with a small radius
nose carefully shaped to optimize the pressure distribution for
high-speed cruise will rapidly develop an unacceptably high nose
suction peak as the angle of attack increases. Given such an air-
foil, an inverse solution for a slat shape and position which will
produce an acceptable velocity distribution on the airfoil nose is
then required. An approximate solution for this inverse problem
is presented in this thesis,

The inverse problem can be posed in the following form.
For an arbitrary airfoil at a specified lift coefficient, generate a
class of leading edge slats which will induce suitable pressure
modulations on the nose of the airfoil to prevent boundary layer
separation. This thesis does not attempt to define an "optimum"
slat since such a measure of effectiveness involves numerous
practical design considerations. For example, the structural
strength of the slat and potential aeroelastic effects as well as
provision for slat retraction intoc or on top of the airfoil nose must
be considered by the designer. The semi-inverse slat design
technique presented in this thesis allows the designer reasonable
freedom to specify the slat chord and location to satisfy such
non-aerodynamic constraints and then generates a slat shape
which will induce approximately the specified velocity field on the
airfoil.

Designing a slat for proper nose flow modulation at a single
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specified lift coefficient is quite realistic because leading edge slats
are employed primarily for the closely-defined, steady-state flight
during approach for landing and climbout after liftoff. If efficient
slat performance under off-design conditions is a requirement, a
designer can adopt a slat geometry representing a compromise
between two single-design-point slats or can employ a variable
camber slat.

For the inverse slat design problem, the planar potential
flow assumption introduces the analytic convenience of complex
variables and does not unduly restrict the physical relevance of
the solution. The boundary layer on the airfoil experiences an
extremely favorable pressure gradient from the stagnation point
forward to the point of minimum pressure, and thus it can be ex-
pected to be thin with respect to the slat gap. Experimental studies
such as Lachmann's (4, 189) support this approximation. For an
inverse solution, the pressure gradient on the airfoil nose can, in
principle, be explicitly specified to avoid local boundary-layer
separation. The validity of the implicit assumption that the flow
on the slat is attached can be checked after the inverse solution
by direct boundary-layer calculations using the predicted inviscid
pressure distribution on the slat. Because leading edge slats are
normally deployed at low airspeeds for takeoff and landing appfoach,
the assumption of incompressible flow is justified. Except for the
case of slats on highly swept wings where the spanwise crossflow

may be significant, the two-dimensionality assumed in this planar
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potential flow solution is not highly restrictive.

The goal of this thesis is a semi-inverse approximate solution
which is constrained to produce a physically realizable slat configura-
tion. In principle, after mapping the airfoil to a circle, an exact dis-
tribution of singularities corresponding to an arbitrary specified
velocity on the circle could be determined, For example, by assuming
a power series representation for the velocity field outside the airfoil
circle, the singularities could be located by numerical determination
of the points at which the series diverges. However, for an arbitrary
specified velocity distribution, the closure and uniqueness conditions
for such an unconstrained inverse solution are unknown. Absolute
closure of the singularity flow field requires that the sum of source
and sink flows be zerc, but this does not insure that there will be a
single closed slat streamline, nor does it preclude re-entrant shapes.
Furthermore, the uniqueness of an unconstrained inverse solution is
dubious. For example, consider the classical ambiguity of the iden-
tical external fields induced by a point vortex or by any concentric
circle with vorticity uniformly distributed on its circumference and
having the same circulation as the point vortex. The general problem
of an inverse solution for unknown singularities at unknown locations
appears to be largely unexplored. Therefore, a restricted singularity
distribution which is constrained to generate a single closed slat is
used in this semi-inverse solution.

Once the slat shape has been generated by the semi-inverse
solution, the accuracy with which the specified flow field has been

matched can be checked using an exact numerical solution technique



such as the Douglas-Neumann.

The flow solution for the slat and airfoil under off-design
flight conditions can, in principle, be obtained, without solving a new
integral equation, from the single inverse solution which generated
the slat. The flow velocities along the airfoil and slat from the in-
verse solution can be integrated to obtain the potential at each point.
Since the potential is also known along the two segments of the real
axis which comprise the classical tandem biplane (6, p. 171), the
potential to potential mapping can be determined. The slat and
airfoil velocity distributions off the design point can then be obtained
by using this mapping to transform the known tandem biplane solu-
tion for the appropriate angle of attack to the airfoil plane. This
proposed transformation solution for the off-design flow appears
to be shorter and to require less computer storage than the numer-
ical integral equation solutions of the Douglas-Neumann type.
However, the alternative solution is not developed in this thesis
because optimized Douglas-Neumann-type computer codes are now
so-readily available,.

For an arbitrary airfoil, Riemann's theorem guarantees
the existence of a conformal mapping to a circle, and numerical
techniques to determine the transformation have been developed.
Thwaites (7, pp. 117, 125) discusses the general circle mapping
and extensions of Theodorsen's exact solution for arbitrary airfoils,
In this thesis, the circle mapping is assumed to be available.
Because the solution for circulatory potential flow around a circle

is well known, applying the inverse of the circle transformation
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yields the inviscid velocity distribution on the airfoil without a slat.

The desirable pressure distribution on the airfoil is assumed
to be known. For a specified airfoil and flight Reynolds number,
the pressure gradient behind the minimum pressure point which the
boundary layer can tolerate without separation can be estimated
using one of the numerous separation criteria available in the lit-
erature.

In Boundary Layer and Flow Control, Cooke and Brebner (8)

recommend the separation criteria of Thwaites and of Curle and
Skan if the airfoil nose boundary layer is expected to be laminar,
and suggest the turbulent separation criteria of Maskell or Spence
downstream of the predicted transition point. Schlichting's analysis
(9, p. 210) based on the Kdrmdn-Pohlhausen approximation provides
an estimate of the most severe deceleration history a laminar
boundary layer can tolerate without separation. However, none of
these separation prediction methods are generally accepted as
accurate, and this paper makes no attempt to determine which is
most appropriate for the nose b.Oundary layer of a slatted airfoil.
For a particular airfoil, it is assumed that a nose pressure distri-
bution which is desirable according to some suitable criterion can
be specified.

The difference between the known velocity on the unslatted
airfoil nose and the velocity specified as desirable from boundary -
layer considerations is defined as the specified modulating velocity.
The semi-inverse design technique generates a slat whose induced

velocity field on the airfoil closely matches this specified modulating
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velocity distribution. An approximate matching of the specified
modulating field is consistent with the approximations inherent in
the semi-empirical boundary-layer separation criteria from which
the specified velocity distribution is derived.

Using the circle mapping which is assumed to be known,
the required modulating field on the circle can be obtained from
the specified modulating velocity distribution on the airfoil. The
semi-inverse problem of this thesis can then be posed in the fol-
lowing form. Determine a distribution of a restricted class of
singularities outside the circle which will approximately match

the specified modulating velocity field on the circle.
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II. ANALYSIS

A. Basic Domains for the Solution

A brief initial description of the major steps in this semi-
inverse slat design technique is appropriate.

The mapping to a circle for an arbitrary airfoil is assumed
known. By introducing an additional conformal transformation from
the circle to an ellipse of the same nose radius to chord ratio as the
original airfoil, an alternate basic domain in which the nose flow
has direct physical significance is obtained. Through a sequence
of conformal transformations, the ellipse surface is mapped to the
real axis of a half-plane in which the transformed ellipse nose is at
the origin. At lift coefficients which are sufficiently high to require
a slat, the near-surface streamlines of the ellipse plane flow from
the lower stagnation point around the nose conform closely to the
curvature of the ellipse. These nose streamlines transform to
sloping lines of small curvature in the upper half-plane. The slat
chord can then be approximated by an inclined straight line segment
placed along one of these half-plane streamlines. Selection of the
slat chord and location is based on the distribution of the transformed
specified modulating velocity along the real axis of the half-plane.

Camber and thickness of the slat are represented by a finite
series of distributed singularities on the slat chord line. The slat-
induced velocity on the real axis can then be expressed in terms of
the unknown series coefficients. To determine the coefficients, a
linear least squares matching of the slat field to the specified modu-

lating velocity distribution is used. On the slat chord line, the
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normal velocities induced by the singularity distributions correspond
to the sine and cosine camber and thickness modes of thin airfoil
theory. The slat shape in the half plane is determined by integration
of the linearized local flow inclination. Finally, the slat geometry
in the ellipse plane is obtained by applying the inverse of the mapping
to the half plane. Detailed discussions of each step of the analysis
are given in the following sections.

The ellipse plane is an analytically convenient basic domain
in which the nose flow closely models the operating flow environment
of the slat. For most airfoils without extreme leading edge camber
or nose droop, the nose is very nearly elliptical. Thus the airfoil
to ellipse mapping is one-to-one in the nose region. Because leading
edge slats and nose droop are alternative solutions for the problem
of high nose velocities on thin airfoils, a highly cambered leading
edge is not required on an airfoil intended to operate at high lift
coefficients only with a nose slat extended.

The complex potential for a circle with circulation in a
uniform onset flow is well known, and the streamline equation in the
circle plane can be readily derived. When mapped to the ellipse
plane, the streamline pattern provides a graphical visualization of
the nose flow without a slat. Because the dominant parameters in
the nose region are the total circulation and the nose radius, these
streamlines around the ellipse nose will closely resemble the leading
edge flow pattern for the original airfoil.

The Joukowski transformation
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maps a circle of radius ¢y = (a + b)/2 in the z = X5 F iyz plane into
an ellipse of thickness ratio 7 in the Z = x, ¢+ iyl plane. The semi-
major axis of the ellipse is defined as a, and the semi-minor axis

as b. The nose radius of the ellipse, R0 = a'TZ, can be normalized

by the chord 2a:

RO 2

a

—12-— T =b/a

For large z, the mapping derivative IdZ/dz' approaches
unity as l/zz, and the distant flow field is therefore the same in

both planes,

B. Conformal Mappings Required for Semi-Inverse Solution

The initial step in the mapping to the half-plane from the
ellipse plane Z is to return to the circle plane z by the inverse

Joukowski transformation:

z = (1/2) (Z + 7% . <)

The flow external to the airfoil circle of radius cjyis mapped

to the upper half-plane ¢ (W)20 by the following bilinear transfor-

mation:

z+c

3
zZ-Cgy

W =i ) W= x, iy,

This transformation sequence opens the ellipse at the trailing edge,

unfolds it about the leading edge to a straight line, and, by a rotation



-13-
of /2, maps the ellipse surface onto the real axis in the W plane
with the nose at the origin. The ellipse trailing edge maps to infinity
in the half-plane, and the circle at infinity in the ellipse plane col-
lapses to the point W = +i. The upper and lower midchord points of
the ellipse, (Xl =0, Yy = +b) and (x1 =0, y; = -b), map to the points
(x3 =+1, y3 = 0) and (x3 =-1, Y3 = 0).

The nose region for the particular ellipse used as a test case
in Part III is shown in Figure 2, and the transformations of this
region into the circle plane and half-plane are given in Figures 3
and 4, respectively. Corresponding coordinate grids are plotted
in each of the domains. Distortion of these grids during the trans-
formations illustrates the variation of the mapping derivatives over
the planes. The mapping of the concentric circles in the z plane
into confocal ellipses in the Z plane is, of course, a classical prop-
erty of the Joukowski transformation.

The circulation of the ellipse without a slat is fixed by pre-
scribing zero velocity at the trailing edge (xl =a, y; = 0). For an
ellipse of thickness ratio 7 at an angle of attack a in a uniform onset
flow with velocity U, this circulation TO required to satisfy the Kutta

Condition is 1"0 = 41rUc3sina. The section lift coefficient Ca is

Cl = 27x(l+7)sina

As will be discussed in Section E, the addition of a leading
edge slat of circulation I‘s requires a small additional increment of
compensating vorticity, I‘C, on the ellipse to maintain the Kutta con-

dition. The total circulation on the ellipse, I‘t, is then given by
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in that domain.

For the lifting ellipse without a slat, the total circulation I,
on the ellipse is the basic circulation FO required to establish the
Kutta condition at the ellipse trailing edge. If the circle plane vari-
able z is expressed in polar form as z = reie, then the scalar
potential $(z) = R [F(z)] and the stream function Wz) = 0[F(z)] are

readily obtained from the complex potential.

2
. C . .
F(z) = U {rel(e‘“) 122 e 024 sina 10g[(—§—)e1(9_a)]}
3

F(z) = ®(z) + i¥(2)

2
$(z) = U{[r + (—1.—3)] cos(0-a) - 2c3(9-a)sinu}

2
C

V(z) = U{[r - (—i_é)] sin(6-a) + 2c3s'1na(log r -~ log c3)}

The last equation can be rewritten to express the azimuthal
coordinate 0 along the streamline ¥ as a function of the circle plane
radial variable r.

2rc,sina
- . =1 3 r ¥ r
=a+ sin {[‘T‘z_’] log ) -g 73 2)}
R 3 cy-T

3
The stagnation streamline is assigned ¥ = 0, and the argument
of the front stagnation point in the circle plane is 6 =7+2a. The

transformation to the Cartesian coordinates W = X3+ iy3 in the half-

plane is

c c, 2
2(—I‘é)sin &) 1-(-1,—3’)

5 Yl =
<3 3 2 3 3 cy 2
l-Z(T)cos 0+ (— 1-2(——r—)cos 6 + (—i_--)

X3=

r
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Under this transformation, the nose stagnation point maps to

sin2a

3 - 7 T+cosza
s

X

In the same notation, the Joukowski transformation to the ellipse
plane Z = x; * iyl is written as
€7 NI

3! =[r+ (—4—;)] cos8; ¥ =[r - (—4—;)] sin@

Using a simple digital computer program, the streamline
coordinates in the circle plane can be obtained by repeatedly evalu-
ating the stream function equation given above. Equal increments of
the stream function parameter ¥ are chosen so that the convergence
of the streamlines is a consistent representation of local flow
velocity increases. For a fixed value of ¥, repeated solution of
this equation for © at closely spaced values of r across the approp-
riate range yields a set of (r, 8) coordinates along the streamline.
The circle plane streamlines can then be mapped point by point
to the ellipse plane Z and the half-plane W by employing the two
transformations given above.

For the test case ellipse described in Part III, the stream-
lines around the ellipse nose are shown in Figure 2 and the flow
pattern in the half-plane is shown in Figure 4. The uniform onset
flow in the ellipse and circle planes collapses to an inclined vortex
doublet at W = +i in the half-plane. A small region above and to
the right of the origin in the half-plane is the domain for effective
slats. In this region, the mild curvature of the main flow stream-

lines permits the straight line segment representation of the slat
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chord line. For slats close to the transformed ellipse nose surface,
the inclination of the chord line will be small, However, the dis-
placement of the slat chord line due to this inclination cannot be
neglected in comparison to the slat height above the real axis. For
slats farther from the ellipse nose, the chord line inclination in the
half-plane can be large. The real axis is the line of symmetry for
the W plane flow, and the flow system in the lower half-plane is a
mirror image of the streamline pattern illustrated in Figure 4.

An additional transformation from the half-plane to the slat-
centered half-plane or slat plane is introduced so that the expressions
for the induced velocity field of the slat and the slat shape integration
can be written in a general form independent of the slat geometry
parameters. The four slat geometry parameters are defined in the
half-plane as shown in Figure 5. The slat chord is defined as 5
‘the height of the midchord point above the real axis and the lateral
offset of this point from the imaginary axis are designated fl and fz,
respectively; and the angle between the slat chord and the real axis
is defined as k()'

As will be discussed in Part III, the slat chord, height, and
offset are selected by examination of the distribution of specified
modulating velocity along the real axis in the half-plane. The dis-
tributed singularities on the slat have characteristic induced velocity
distributions on the transformed ellipse nose. Comparison of these
characteristic slat-induced fields with the specified modulation field
provides the insight required to select an effective slat location.

Initially, the slat chord inclination k6 is determined by prescribing
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that the slat midchord be set parallel to the main flow velocity at
that point. The deviation of the slat surfaces from the assumed
position of the slat singularities along the chord line is initially
taken to be negligible with respect to the slat height. Physically,
this is a reasonable assumption, because an unstalled slat is limited
to an effective angle of attack of approximately ten degrees. Fur-
thermore, this approximation is consistent with the thin airfoil
linearizations which will be subsequently introduced into the slat
aﬁalysis. In Part III, a higher order correction to the slat inclina-
tion is introduced.

The transformations from the ellipse plane to the circle
plane and half-plane are implicit functions of the ellipse nose radius.
In contrast, the mapping from the half-plane W to the slat plane
S = s + it is a function of the slat geometry parameters only:

+ik

S = (-%) e © [W - (£, + ifl)]

This mapping translates the slat midchord to the S plane
origin, rotates the entire plane by k6 to place the slat chord along
the R (S) axis, and uniformly dilates figures in the half-plane by
the factor (4/(:2).

The normal and parallel components of the main flow velocity
along the slat chord (-2<s <2, t = 0) can be obtained by substituting

the inverse slat plane mapping
-ikg

W = — S+f2+if1
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into the equation for the complex potential F(W) on page 14.

The quantities D and E are defined as
-ikg

' c2e
D(S)EW+1= ———4-—-— S+f2+1(f1+1)
-ik6

cZe
ES)=W -1i= — S+ f2+i(f1-1)

The complex potential F(S) for the main flow in the slat plane

is then given by

. . T
F(S) = Uc3[(%) e~ia (-DE) e+1a]+i(§%)(10g D - log E) +a(—2—;-)

Differentiation to obtain the complex velocity q = dF(S)/dS

yields
. . . . I
- J -1 ~-1a 1 +ia t
q(S) =D 2Uc3 [(——Ez) e + (-——-DZ) e ]+ (ﬂ—————DE)
. _dp _ c2 -ikg
D = ——ds = —-—4 ) e - E,

Along the slat chord, S = s, and a sequence of intermediate

variables can be defined as follows.

k7 = cos k() k8 = sin k6

€2 ©2
D(s) =[(T) kos + f2]+i [f1 - ) k8s +1] 3 4

it
Fh
-+
[ N
Lo

C2 cz
E(s)=[(T)k7s+f2]+i[f1-(T) k85_1] 3 5

n

s}
+
[N
[

- ce 2 .
D™= f6+ 1f7 —fi - f4+ 1(2f3f4)
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2 _ 2 2, .
E =£8+ 1f9 -f3- f5+ 1(2f3f5)
DE={ +if —f2 £ £+ i(f,f, + £.f)
= h2 T3 T3 7 Mg T M3t T M3
S A fo=f24 2
DZ f14 14 6 7
Rl TR
EZ fl5 15 8 9
f . -if
1 h127Mp3 _ 2
DE - I ; flé“ffz+f13
16
kZ = o.—k(), klZ = cos kz; k13 = sink2
k3-:-o.-k6, k14=cosk3; kISEsipk3
o Uczc3 o Uc2c3ﬁ . - c?_l—‘t
4 2f14 5 2f15 6 47rf16

In terms of these intermediate variables, the complex

velocity is

als) = ey [ gk pofgly 5 + il ¥ £7k) 5)]
- o5 fgky g * fgkyg + ifgky 4 - fokyg)]
+ocg[f) kg - £ 3kg - Ufy gk + 1) kg)]

q(s) = cy(fy o+ if o) - c5(f19 tfy )+ cp(fy) - if,5)

At the slat chord station 55 the parallel component of the

main flow is designated u; and the component normal to the slat

20
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is designated Viopr

a(s3) = 8350 = Viz0
Uiog = c4fiq - csfig tocpy
vizo = ~C4fig T csiap t cpizn

C. The Distributed Slat Singularities

The choice of a singularity representation for the slat is con-
strained by the requirements of other sections of the complete
semi-inverse solution. An explicit expression for the slat-induced
velocity field in terms of a finite series of singularity distribution
mode coefficients is needed. The inversion can then be conducted
using a least squares technique to select the coefficients required
to match the specified modulation field. Furthermore, the local
flow field along the slat chord line must be contiﬁuous to permit
integration of the local flow slopes to obtain the slat shape. A dis-
tributed singularity representation rather than a multiple point
vortex model is therefore required.

The complex velocity functions employed in this solution
can be derived by a further Joukowski transformation S = ¢ + 1/¢
between the slat circle plane { and the slat plane S = s + it in which
the slat chord is the portion of the real axis -2 <s< 2. Because
the main flow is regular and singularities are added only along the
slat chord, the velocity field outside the slat circle If,l =1 is free

of singularities and can be represented by a Laurent's series 1/4“.
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After adding a term 1/{+1) which is singular at the point { = -1
corresponding to the slat leading edge, the complex conjugate
velocity in the slat circle plane can be written as the following

finite series with real coefficients:

The complex conjugate velocity is mapped back to the slat

plane using the inverse Joukowski transformation.

- +"Zsz-4

The regular terms can then be written as

n
s¥s%.4
—a

(a + ibn)(-l—n) = (a_+ ib_) n>0

and the singular terms have the following form:

1. . S-2
rr1) = (ot ibg) \ 1 -Y5z

(a0 + ibo)(

The a terms are source-sink distributions corresponding
to slat thickness, and the bn terms are vorticity distributions cor-
responding to slat camber. To satisfy the requirement that there
be no net mass flux at infinity (a necessary condition for a closed
slat), the two leading order thickness terms 2 and ay must cancel
as S - . Because { =S as S —~ o and these two terms are ao/(§,+1)
and al/l; in the slat circle plane, it is apparent that closure requires

a; = -24. As will be shown in the discussion of the slat shape modes

corresponding to these singularity distributions, the singular a
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term produces the finite slat nose radius and thus is chosen as posi-
tive.

The contribution to the induced velocity field by each of the
distributed singularity modes on the slat can be evaluated along the
transformed ellipse nose surface which is defined as the ground plane.
The slat plane ordinates Si =8 + iti along this ground plane which
correspond to each half-plane matching station W = x,

i3

tained from the slat plane transformation given below. In addition

= h. are ob-
1

to the four slat geometry parameters (chord 5 height fl’ offset f?_’

angle ké), the quantities k, = cos k() and k_ = sin k() are utilized.

7 8
ik ik

S = (4/(:2) e 6 [W—(f2+ifl)] = (4/c2) e 6 [

(h;-1,)-if, ]

t, = (4/c2)[(hi-f2)k8-flk7]; s, = (4/c2)[(hi-f2)k7+f1k8]

The uniform rotation under this transformation maps the
R(W) axis onto the ground plane, a line with positive slope k()' On
this inclined ground plane below the slat, the parallel unit vector
is G = k7 + ik8, and the unit normal vector directed away from the
slat is N = k8 - ik7. |

Because the complex velocity is conserved in the mapping
between the slat plane and the slat circle plane, the regular complex
conjugate velocity terms which are of the form

- . 1
qmL = (an + 1bn) (—ﬁ) n> 0

g

can be initially evaluated in the { plane. By defining the slat circle

1¢1

plane variable in polar form, { = r,e °, expressions for the En can
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be obtained in terms of powers of the modulus T, and multiples of

the polar angle ¢l.

- N B
q =(a t 1bn) ) e
r
1
— 1 . : .
q, = (—r—n-) [(an cos n¢, + bn sin n¢1) + 1(bncos nd)l-ansmncbl)]
1

The velocity component u parallel to the transformed ellipse

nose surface is obtained from the scalar product of an and the com-

plex conjugate of the ground plane unit vector, G.

n n (k7

]
i
ol

- ikg)

u_ = (—1;‘— [an(k7 cos nc)&1 + k8 sin nd)1)+bn(k7sinnd)1-k8 cos nd)l)]
r
1

For the singular camber and thickness terms, the induced
flow component, Uy parallel to the ground plane is obtained in the

same manner.

i
(E+1)=r,e 2
-i¢
G0 = (ag+ibg) (i) = (Bgtibgle) e
ao bO
Uy = (;-;)(k7cos¢2 + kssin d)z) + (}-;)(k751n¢2 - k8 cos d;z)

Along the ground plane which is the axis of symmetry of the
slat plane, the normal components of the velocity fields induced by
the slat and by the image slat sum to zero. However, in the course
of the evaluation of the velocity field induced on the slat by the image

slat in Section F, the normal velocity components v, are



-25-

required. The scalar product of En and the complex conjugate of the

unit normal vector N is defined as vn.

Vo4, N=qn° (k8+1k7)

Comparing this equation for v with the basic expression for
u given above, it is apparent that each of the normal components v
can be obtained from the corresponding expression for u by substi-
tuting k8 for k7 and —k7 for k8. The geometrical variables Ty, Ty,

¢, and ¢, are expressed as functions of the slat plane coordinates
1 2 P P

S = s + it through the inverse Joukowski transformation.

s+¥s®.4

£ = )

A double subscript notation T Ty etc. is introduced to
identify values of the geometrical variables with their associated
matching station hi in the half-plane.

Several intermediate variables are introduced during the
evaluation of the primary geometrical variables which is given below.

In this notation, the slat circle plane variable is

[ ST

¢, = (-é-) s, + it + [(s, + iti)z - 4]

If the square root term is written in polar form,
- A
(Si + 1ti) - 4

then ¢, can be expressed as

Zi¢i3]

[

1 ..
Li = (—2—) s, + 1!:i + [ri3e
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The intermediate variable Pig = sin 2(;‘).13 is utilized in the

evaluation of the real and imaginary components of the square root

term which are defined as T4 and g respectively.

fre

2
r., = [s.4+ 2y 8((:.2 - sfz)+ 23.21:.2 +16]
i i i i i

1

i3
Zs.lt:i siz—tiz-4
P;5 = sin 29,5 = — cos 26,3 = —5
i3 i3
i
_ L. el T
T4 = (r 3) s1n¢>i3 = [(-2—)(r 3785 + ti + )]
1
2 .
r14=-[ ] Hsi<0£pi5<0
N L
1 1 2 2 2
= 2 - — - -
Ti5 = (r3)° cosdyy = [(F)r;5+ sy - & - 4)]

[

rg == | ]2 if p,g>0 and 5.,<0

By equating the Cartesian expression for éi

[

L= ) [(sy+ ) tilty + 1 )]
with the polar form

6y = Ty oxp (5= 7y (py +ipyp)

1

the modulus Ty and the two geometrical variables p;; = cos d)il and

p;, = sin d’il can be evaluated.

1
1 2 2,2
ri1 = G) [(sy+ x3)" + (8 + 1, )7 ]
_ 8tTis o bTTig
Pi1 T Tz Pi2 ¥ 777,
il il
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The quantity (t;.l + 1) = ri exp(id)iz) which appears in the
singular velocity functions can be similarly expressed in terms of

the modulus ro and two additional geometrical variables, Pi3 =

cos¢., and p,, = sind)iz.

(Ci¥1) = ri5(py3 ¥ pyy) = 15y (P +iP;5) +1

)=

2
Tig =y Y ey v L)

TPyttt _ TP

P., T ———— ; Py =
i3 ri2 i4 ri‘2

For this semi-inverse solution, the eight highest order com-
plex velocity functions are used to represent the slat thickness and
camber modes required to match the specified velocity distribution.
All of the coefficients are redesignated as BI‘ The first four camber
terms are designated Bl’ BZ’ B3, and B4; the primary thickness
mode B5 is the singular a, term minus the first regular thickness
term a,; and the second and third regular thickness terms are
redesignated as B6 and BT These seven complex conjugate velocity
functions qp are defined below as functions of the slat plane variable
S. The signs are chosen so that a positive coefficient B

I corresponds

to positive camber or thickness on the forward part of the slat. (10)

singular camber mode B,

: ' 1
= 2By (s_z)Z]
497 2 " 5%z

[\
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first regular camber mode B

2
_ iB,
Q2= 72

1
2

[S-(S%-4)

]

second regular camber mode B3

-iB 1
- _ 3 a2 2 43
Q3= —— [87-5(87-4)%-2]

third regular camber mode B4

1
= _ip [8=s%-977
94 4 )

primary thickness mode B

5

oo {6 o |

second regular thickness mode B¢

-B N
q, = —0 [5%-5(s%-4)2

: 2]

third regular thickness mode B

2 17’
- _ S-(5°-4)
47 = Bq [ 2 ]

The influence coefficients U for these seven singularity

7

distribution modes are the basic input for the linear least squares
solution which is used to select the mode coefficients BI required

to match the specified modulating velocity field. The influence coef-
ficient U is defined as the velocity component parallel to the

ground plane (at the slat plane coordinates (Si’ ti) corresponding to
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the matching station hi) which would be induced by the Ith singularity
distribution mode with coefficient BI of unity., By selecting the
appropriate terms from the general induced field expressions given
on page 24 and applying the multiple angle formulas, the seven
influence coefficient functions can be expressed in terms of the six
basic geometrical variables riy» Tizr Py Pipe Pi3e and P;4 2S de-
fined on pages 26 and 27.
Influence Coefficients u.

1

singular camber mode Bl

1
Uy = ‘ri?_) (ksp;y - kgP;3)

first regular camber mode B-2

S
u, = (r_ﬂ_) (kopip - kgPyy)

second regular camber mode B3

u, = () (k sin 2, - k

T

i3 g €08 2¢,)

1 2 2
U5 = (r 5) [2kyp;1Pip - Kg(Py) - Pyo) ]
il

third regular camber mode B4

sin 3q§1 - k, cos 3([)1)

8

_ 3 3
ia = (—3) [kq(3p;; - 4p;5)-kg(4p;) - 3p;;)]
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primary thickness mode By

oA 1
U = (}:2“) (kypjz + kgbiy) - (ril) (kop;) +kgpyp)

second regular thickness mode B()

-1
U = —-7) (k7 cos 2(1)1 +k8 sin 2(1)1)
T
1 2 2
W = ('r‘ 7) [Kqlp;) - Pip) + 2kg Py Py, ]
i1

third regular thickness mode B7

- (_1_3) (k. cos 3¢, +k

i

u sin 3¢1)

i7 8

Y = (;1_3) [k7(4p31 - 3p;)) T kg(3py; - 4sz)]
il

The slat plane flow is symmetric about the ground plane since
the uniform translation, rotation, and dilatation during the mapping
to the slat plane do not impair the half-plane's symmetry above and
below the real axis. The induced velocity field of the image slat
therefore doubles the slat-induced parallel flow component along the
ground plane and cancels the normal component of the slat field.
Thus the parallel velocity component 9 induced by the Ith singu-
larity mode at the matching station hi in the half-plane is twice the
product of the mode coefficient BI’ the slat plane to half-Plane map-

ping derivative 4/c2, and the influence coefficient u,:

at X3 =hi’ 91 = BI(S/CZ)uiI for I=1,2, ..., 7
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The influence coefficients for a slat of zero inclination at
height-to-chord ratios of one, one-half, and one-quarter are shown
in Figures 6A, 6B, and 6C. The influence coefficients for a slat
at a height-to-chord ratio of unity with an inclination of 7/4 are
illustrated in Figure 6D.

Along the slat chord line which is the segment (-2<s<2,t=0)
of the slat plane real axis, the chordwise station can be defined in
terms of the argument 6 as s = 2cos(6). The regular complex
velocity expressions from pages 27 and 28 are then reduced to the
classical Fourier modes cos(n@) and sin(n@) of thin airfoil theory,
and the singular terms have a tan(6/2) dependence. This formula-
tion of the local velocity field on the slat chord simplifies the final
integration for the slat shape. The normal flow components induced
by the camber modes are symmetric above and below the chord
line, and the parallel u components are antisymmetric. For the
thickness modes, the v components are antisymmetric and the u
components are symmetric. The signs given below for the seven
sets of parallel and normal velocity components induced by the
singularity distribution modes are those appropriate to the top sur-
face of the slat chord line at the station s, = Zcos(ei).

singular camber mode B,

B1 Bi
) tan ()

B
T2 ill1 = ‘2

v =

ill v

first regular camber mode B2

v112 = -B2 cos Gi ui;12 = B2 sin Gi
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second regular camber mode B3

Vii3 = B3 cos ZOi ui13 = —B3 sin zei

third regular camber mode B4

v = -B, cos 30, u, = B, sin 36.
4 i i

il4 il14 4

primary thickness mode Bg

B 0, B,
Viig = (‘Z_) [tan(—z—) - 2 sin 91] u, g = (T)(I-Z cos 9'1)

second regular thickness Bé

Vi1 = -B6sin ZGi uil6 = -B6 cos zei

third regular thickness B

7

Vil7 = B7 sin 39i ui17 = B7 cos 36i

The slat circulation I‘S is obtained by integrating the local

vorticity y(s) along the slat chord. Applying the thin airfoil lineari-

zation, the local vorticity is twice the camber-induced parallel

velocity component on the slat chord line. The contributions FI to

the slat circulation by the four camber modes are evaluated below.

regular camber modes 1 =2,3,4

T. E. +2 T
L = f yy(s)ds = Zf u (s)ds = 4 fuI(e)sin 6 de
L. E. -2 0
T . )
= 4B, g sin [(I-1)6] sin 0 d6 = 27B, for I =2

0O forI=34

1]
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singular camber mode I =1

T T

_ 0, . _ l-cos6- . B
T, = 2B, gtan(—z—)sm 6 do = 2B, .g [~5g-)sin0de = 278,
The total slat circulation is then Ps = 27r(B1+B2). Without

altering the total circulation, the second and third regular camber

modes redistribute vorticity along the slat chord.

D. Linear Least Squares Solution for Slat Mode Coefficients

Higher order slat singularity distribution modes which could
introduce undesirable waviness in the slat surface and sharp local
fluctuations in the induced velocity on the ellipse nose have been ex-
cluded. The four camber and three thickness modes employed in
this solution provide seven coefficients to be selected to match the
slat-induced velocity Wi to the specified modulating velocity W.o
ath the matching stations hi in the half-plane. For a particular slat
geometry (slat chord, height, offset, and angle fixed), the total

slat-induced field at hi is a linear function of the mode coefficients
7
Bp. wj = ), i1
I=1

8
)

The total number of matching stations is designated e . A

W =

il )(Blu B, u. +...+Bui7) for i=1,...,e

i1 " P22 7
linear least squares technique (11) is used to solve the following
system of ¢ linear equations

_ 8 -
Woo = (cz)(Bluil + BZuiZ oo +B ui7) for i=1,... ,e
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for an arbitrarily large number of matching stations.

Although the regular velocity functions are mutually orthogo-
nal on the slat chord, their induced fields on the inclined ground
plane below the slat are not.

The linear least squares technique is employed to select
the set of coefficients which minimizes the sum ¢ of the squares of
the differences 6i between the specified and slat-induced velocities
at the matching stations.

c

_ 2
8; E(wyp - wilg)

c
_ 2
5, = (—é“) Woo - (Bluil + BZuiZ + ... .+B7ui7)
e 2
¢= ), 8
i=l1

Differentiation with respect to BI to satisfy the minimization condi-

tion

- =1,99 -
O—(T)—g—-B-i' for I—-l,.a.,7

generates the seven normal equations
e
0 =iZ=:1 uﬂéi for I=1,...,7

The normal equations can be rewritten in matrix form by defining
the (e by 7) influence coefficient matrix U, the 7-element vector of
mode coefficients §, and the e element vectors of specified modu-

lating velocities w and of differences 6.
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11t Y17 1 12 1
. o CZ .
U= ; B= y W= ('_8_‘) ; 6 =
uel o e e ueT }':7;7 We 66
0=UTs
0 = UL (w-UB)
ulug =vtw

The relatively small 7 x 7 influence coefficient product
matrix A= UTU can be readily inverted using a standard digital
computer subroutine, and the mode coefficient solution vector

is then obtained by a final matrix multiplication, B = At uTle,

E. Maintaining the Kutta Condition on Ellipse when Slat is Added

When a leading edge slat of circulation I‘S is added near the
nose of the ellipse, the vorticity of the image slat I"i = - Fs is sub-
tracted from the circulation of the ellipse. Because the image
slat's negative vorticity is closer to the ellipse trailing edge than
the vorticity on the slat itself, a small backflow or upward net
velocity is induced at the trailing edge. An increment of compen-
sating vorticity I‘C at the ellipse center is therefore required to
restore the Kutta Condition by cancelling this backflow.

Consider the elementary case of a point vortex on the center-
line ahead of a circle of radius R. The total vertical velocity at the
trailing edge VT. E. 'is the sum of the contributions from the slat

vortex at radius g , the image vortex at radius Rz/K, and the
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compensating vortex at the center of the circle.

T T r
v - s } s + C
T. E. 27(k+ R) RZ 27R
ZTF(T +R)
Because the Kutta Condition requires VT E = 0, the com-

pensating vorticity for this trivial case is

For realistically thin ellipses and efficient slats of small
standoff from the nose, the compensating vorticity I‘C ranges from
approximately 3 percent to . 5 percent of the basic ellipse circula-
tion FO‘

In the far field, the vorticity distributions on the slat can be
represented by two point vortices. Returning briefly to the slat
circle plane variable {, the B1 and B2 camber terms which have
1/t dependence rapidly dominate the B3 and B4 terms which are
attenuated as 1/(,2 and 1/g3, respectively. For the far field, the
singular or flat plate camber mode Bl can thus be represented by
a point vortex of circulation 21rBl at the slat quarter-chord point,
and the first regular camber mode B, can be represented by a second
substitution vortex of strength 27rB2 located at the slat midchord.

The compensating vorticity required for each of these two
substitution vortices can be readily determined in the circle plane.
The geometrical variables are defined as shown schematically in
Figure 7. A vortex of circulation 1"13 at the circle plane coordinates
(x13, y13) induces a negative vertical velocity component VS at the

trailing edge.
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T
Vg = (2_75;) COSd’s
15

T C.,-X
BRYE! 37%]3
Ve = l57) ( 73 )

T1s

[

_ 2 2
Ty = [(e3-xy3)7 + yy5]

The primary vortex is at the radius r

2 2 4%
13 [x13 + y13]2, and the

. . . . _ 2
radial coordinate of the image vortex is T4 = c3/r13.
T14%13 _

_ . - 2 2
x14 --rl4 COSBS = —‘;'T';— ; 1'16- [(C3‘X14) + Y14]

[N

At the trailing edge of the circle, the positive vertical velocity com-

ponent that the image vortex induces is given by

-r -T C,-X
_ (s (13 (63714
Vi = (2wr16> C°s¢&"< 2w ) ( 2 )

T16

The compensating vortex at the circle center must induce a
vertical velocity VC equal in magnitude and opposite in sign to the

sum of the velocities induced by the substitution vortex and its image.

1-.l(l
Vc = 21703 =" (Vs + Vi)
C,=X C,=-X
_ 37 %14 37%13
Ti6 15

The half-plane coordinates of the slat midchord are, by defi-

nition (x3 = fZ’ y3 = fl)’ and the quarter chord coordinates are
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2 2, ..

X, = [fZ - () cos k()] D [fl t () sin ké]

By applying the half-plane to circle plane transformation
given in Section G to these half-plane coordinates for the slat mid-
chord and quarter chord points, the corresponding circle plane
coordinates (XZ’ yz) for the two points can be determined, The
total compensating vorticity required is the sum of the two values
r ., I"C obtained from the analysis above by successively desig-

c
1 2
nating 1"13 as 2B, and 21rB2 with the substitution vortex coordinates

(x13s¥13) set equal to (x5, ¥5)) /4 chord 224 %20 Y2)1 /2 chora’ T€°

spectively.

F. Determination of the Slat Shape Corresponding to the Singularity

Distribution

The exact streamline pattern for the flow around the distribu-
ted singularities on the slat chord line can, in principle, be deter-
mined. The main flow stream function in the half-plane is given in
Section B, and the stream functions for the slat and image slat
singularity distributions can be obtained by integration of the ex-
pressions for the complex velocity fields which are given in Section
C. However, a closed slat surface streamline encompassing all of
the singularities may not exist. Near the cusped slat trailing edge,
singularities will generally lie outside of the slat surface stream-
line. In that region, the non-zero normal flow components due to
the slight curvature of the main flow field, the image slat field, and
the vorticity on the chord line will all distort the slat surface

streamline away from the line of singularities.
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Furthermore, a lengthy non-linear solution for the slat shape
is inconsistent with other inherent approximations in this semi-
inverse design technique. A linearized integration is therefore used
to determine the slat ordinates in the slat plane. The distortion of
the slat due to the mild curvature of the main flow field and the field
of the image slat are approximately taken into account.

Initially neglecting both the slight curvature of the main flow
field in the slat plane and the velocity field induced by the image
siat, the parallel flow component along the slat chord, Usyns is
assumed to be constant. The accuracy of this approximation is
discussed later in the section. Assuming this uniform onset flow
and applying the linearizations of thin airfoil theory, the basic mean
line and fairing shapes which correspond in the slat plane to the
seven singularity distributions on the slat chord can be determined
by integration in closed form. The linearized tangential flow bound-
ary condition is used, and the slope dt/ds of the slat surface at the
chord station s, = 2 cos (Gi) is then given by

at, _ Vi22
ds’i U,y

In this expression, Vioa is the total normal velocity component eval-
uated at s; on the chord line. The ordinates t; of the upper andlower
slat surfaces are designated as Yie and Y7 respectively. Integra-
ting forward from the trailing edge where the ordinates are defined

as zero, the upper surface ordinate at s; is
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s, 0. 0.
tdt et dt(e)q dsy.. =2 0 .
Yie =+f2 (55 1ds _fo (S5 (Ge)de = (H;E){) [v,,,(8)sin6]de

The sum of the normal velocities induced by the four camber

singularity distributions, Bl’ BZ’ B3, and B4 is designated Vil0 and

is symmetric above and below the chord line.

+ v,

v. + . i14

Vito ~ Vi1 i12

* Vi3

The contribution to the self-induced normal velocity by the

three thickness modes B Bé’ and B.? is designated vii8 and is

59

antisymmetric.

= V. . +
v +v116 v

vViig T Vils

il7

Along the upper slat surface, the total self-induced normal

velocity is therefore \] and on the lower surface it is

10 © Vilg’
Va0 " Vils Because the self-induced normal velocity distribu-
tions are the elementary trigonometric functions given in Section C,
the linearized integration for the basic mode shapes can be readily
completed in closed form.

For a uniform onset flow, the seven basic mode shapes in
the slat plane are shown in Figure 8, and their salient characteris-
tics are described below. The distortion of these basic mode
shapes by the curvature of the main flow field and by the field of
the image slat is treated later in this section.

The singular camber mode B, has a constant normal velocity

1

component v.,, = -Bl/Z which corresponds to a flat plate at an
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Bl
() with respect to the flow parallel to
Zuzz
the s axis at the velocity U, The leading edge ordinate for this B1

angle of attack A, = tan" !

mean line is Yiglg=_2 = ZBI/U’ZZ'

The parabolic mean line of the first regular camber mode B2
has its maximum ordinate Vi Is:O = Bz/u22 at midchord.

Adding to the offset due to the singular camber mode, the

reflexed mean line of the B3 mode contributes a net leading edge

[ 4B
displacement of y. = (g
i6 L=_2 3u,,
The angular offset By of the straight line through the leading and
B
-1, 73

trailing edges of this mean line is A, = tan ~(——). This is the
3 3u22

angle of zero lift for the strongly reflexed B3 mode.

) from the real axis in the slat plane.

The slat's finite leading edge radius p is generated by the

primary thickness mode B..
2

B
5
p =38
<2u22>

For the B5 mode, the maximum thickness is at the quarter chord

point, and the thickness ratio Tg is
. (3 ﬁ)( Bs >
5 4 2u,,

In a uniform onset flow, the B5 mode corresponds to an un-

cambered Joukowski airfoil which has an airfoil circle offset

parameter € = B5/(2u (10, p. 71).

22)"
All three of the thickness modes are cusped at the trailing
edge, and the regular modes B6 and B7 also have cusped leading

edges. The B6 mode has chordwise symmetry about the midchord

point, and the thickness ratio T is
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2B

T, = 6
6 3u22

The third regular thickness mode B7 is antisymmetric ahead

of and behind the midchord. For s> 0, the B, mode has '"negative

7
thickness."

The main flow velocity components along the slat chord line
in the slat plane were derived in Section B. Assuming that the
ellipse fineness, the onset flow velocity, and the ellipse angle of
attack are initially specified, the normal component Vi20 and the
parallel component u,,, of the main flow velocity on the slat chord

line are functions of the four slat geometry parameters. As will

be discussed in Part III, Section A, the slat chord c,, the height {

2,

and the offset from the origin, fz, are selected in the half-plane

1’

by examination of the distribution of the specified modulating velocity
along the real axis which is the transformed ellipse surface. The
normal and parallel velocity components then depend only on the
fourth parameter, k6’ the slat inclination with respect to the R(W)
axis.

- For the typical ellipse test case described in Part III, Sec-
tion E, the main flow streamline pattern in the half-plane is shown
in Figure 4. Within the domain for efficient slats which is to the
right of the origin near the real axis, both the convergence and the
curvature of the streamlines are slight. If a straight slat chord is
placed approximately parallel to one of these main flow streamlines,
the streamline curvature will affect the slat loading much more

strongly than the streamline convergence will. This is analogous
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to the thin airfoil approximation in which the self-induced parallel
velocity components along the chord are neglected in the determina-
tion of the local airfoil surface slope.

If the slat midchord is aligned with the local main flow in
the half-plane, then the parallel component of the main flow, U0
can be assumed constant along the slat chord. Typically, the
variation in the main flow's parallel component is on the order of
ten percent of the value of uiZO at the slat midchord, and can be
neglected. This approximation is consistent with the omission of
the self-induced parallel flow components from the linearized slat
shape integration. The midchord value Uy = Yiog =0 is defined
as the main flow field's contribution to the constant parallel flow
along the slat chord line. ILater in this section, the contribution
by the image slat field to the total parallel flow, U5 is discussed.

The normal velocity component due to the slight curvature
of the main flow streamlines in the slat plane must be taken into
account in the slat shape integration. Characteristically, the maxi-
mum value of this normal component of the main flow, Viop is of
the same order as the self-induced normal velocity component

Vi10 + Viis Including the normal component of the main flow, the

local flow shape expression is

dt

(Eg)i - (ViIO tv

18 ¥ Viz0)/ 922

To the first order of approximation, the incorporation of

Vi20 into the linearized slat shape integration distorts the slat to
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conform to the curvature of the main flow streamlines and thereby
removes the effect of this curvature on the slat loading.

The local main flow inclination p at the slat midchord
W = fz + ifl in the half-plane is readily obtained from the main
flow's parallel and normal components oo and Viog in the slat
plane. The transformation to the slat plane introduces a uniform
rotation by the slat angle ké. Therefore, if the slat angle is ini-
tially set equal to zero, then the main flow inclination with respect
to the slat at the origin in the S plane is the same as the flow
inclination with respect to the real axis in the half-plane. The

main flow inclination at the slat midchord is thus given by

-1 <'V120>
po= tan "
120 5. =03k =0
1

The sign convention is chosen so that positive p corresponds to the
normal case of the slat leading edge above and to the left of the
midchord point in the half-plane.

After redefining the slat angle as k, = u to align the midchord

with the main flow, the constant parallel component u, is evaluated

0
at the midchord. Because the main flow streamlines are convex
toward the real axis in the half-plane, the normal velocity component
Vio0 is negative at the slat leading edge s = -2 and increases nearly -
linearly through the origin (where it is zero by definition) to the

trailing edge. This normal component of the main flow field closely

resembles the normal velocity distribution induced by a negative
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first regular camber mode, -BZ. A straight slat chord thus has
initial effective camber with respect to the undisturbed main flow
field in the half-plane. When the normal component of the main
flow is taken into account in the slat shape integration, in the slat
plane the slat will appear to be less highly cambered than an airfoil
with the same mode coefficients BI in a uniform onset flow.

The distributions of the normal velocity components along
the chord line for the slat 70 test case are illustrated in Figure 9.
In this case, the first order correction to the slat angle which is
described in Section D of Part III has been applied. Because the
slat angle was increased beyond the inclination required to align
the midchord with the main flow, the Viao distribution is offset
toward positive values. Nevertheless, the linear chordwise de-
pendence of Viog @S well as the relative magnitudes of the normal
velocities induced by the camber and thickness modes are apparent
from the illustration.

The velocity field induced on the slat by the distributed
singularities on the immage slat must also be taken into account in
the determination of the slat shape. If the slat in the half-plane is
considered as an airfoil in ground effect, a typical slat at a height-
to-chord ratio of one half is well within the ground effect range in
which the field of the image slat one chord away has significant
influence. As is shown in Figure 5, the solution for the image-
induced field on the slat is the same as a solution for the slat-
induced field on the half-plane if the slat geometry parameters

are appropriately redefined. The influence coefficient expressions
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derived in Section C (and thus the same section of the digital com-
puter program) can therefore be used to calculate both the slat and
the image slat fields.
For the computation of the seven parallel flow influence co-
efficients u'iI for the image slat field, the redefined slat geometry

parameters (f‘l, f'z', k'é) given below are used.

[— _
L = Zflcos(k6) = Zflk

) £, = 2f;sin(k,) = 26,k

7° 27 8

‘65 2k6 ; k‘.] = cos(k‘6) ; k'8 = sin| ‘6)

The parallel flow component BIu'iI evaluated at

h'i = (cZ/Z)cos(e.l) on the redefined ground plane then corresponds
to the velocity induced at the slat chord station s, = Zcos(ei) by
the I'th singularity distribution mode on the image slat. The total

parallel velocity u, induced at s, by the image slat is the sum of

8

the contributions by the seven modes and is negative for all realistic
cases.

7

.EZBu'.
18-1:1 I7iI

u

The parallel component of the main flow along the slat chord
is approximated by the midchord value U, It is therefore consis-
tent to consider the parallel component of the image field as constant

and equal to the exact image field at the slat midchord.
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The total parallel velocity u,5 along the slat chord is the

sum of the main flow and image field contributions.

In the derivation of the equations for the slat-induced velocity
which is given on page 25, the expressions for the normal velocity
components are shown to be the same as the parallel component

equations if the two variables k7 and k, are redefined as follows.

8

k'= sin(k'é) ki'= -Cos(k'b)

The normal component influence coefficients u‘l‘I for the
image slat field are computed from the equations on page 29 using

the revised set of slat geometry parameters (CZ’ f‘l, ffz, ‘6’ ‘7', ké‘),

The total image-induced normal velocity Vig at s, on the slat is the

sum of the products of the seven mode coefficients B, and the cor-

I

responding normal component influence coefficients u'l'I

7

it
i8 = 1;1 Bruiy

v

Including the normal flow components induced by the singu-
larities on the slat itself, by the main flow, and by the image slat,

the total normal velocity Viao at s, = 2 cos(ei) on the slat chord is

Vizz T Vig T Vito X Viis T Vizo

and the constant parallel component is u,, =u, + u,,. The slat

22 8 20

ordinates in the combined flow field are obtained by integration as

on page 40,
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Upper Surface

0.
s =2yt -
Yié = (\—1—2—5) J(; [ViS + VilO + Vi18 + vizo]sm(e)de

Lower Surface

Viz = ) fo [Vig * Vito - Virg * Vizo®in(6)d

The Vi10 and Vils terms can be readily integrated analyti-

cally, and the V.g and Viop terms can be rapidly integrated numeri-
cally using a standard Simpson's Rule integration subroutine.

The approximate velocity distribution on the slat in the S
plane can be readily obtained. Applying the thin airfoil lineariza-
tion, the flow speed on the slat surface in the slat plane is the sum
of the parallel velocity components evaluated on the slat chord line.
The parallel velocity components induced by the distributed singu-
larity modes on the slat are given above in Section C. Antisymmet-
ric above and below the chord line, the parallel velocity q; 47 cOB-

tributed by the four camber modes at the chord station s, = ZcosQi

is, on the upper surface,

q;4; = (By/2)tan(e,/2)+B,sin6, - B;sin 26 +B, sin 30,

The sum of the constant parallel component of the main flow,
Uy and the contributions of the three thickness modes is defined

as q.,~ and is symmetric above and below the chord line.
140

Ugo = Upp T (B5/2) (1-2cos8,) - B cos26, + B cos36,

7
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Along the upper slat surface, the linearized flow speed 916

is

%16 = %40 T ig1
and the speed 917 On the slat lower surface is

417 T %40 - L44q

Near the leading edge, this linearized approximation to the
flow speed on the slat surface is not valid. As the argument 6 ap-
proaches the leading edge value w, both the parallel velocity
component g = (Bl/Z)tan(Gi/Z) induced by the singular camber
mode Bl and the normal velocity component Viig = (BS/Z)[tan(Gi/Z)-
Zsinei] induced by the primary thickness mode B, are unbounded.

A higher order approximation for the slat nose flow can be
obtained by Allen's technique (13). To replace the two singular
terms, the flow solution for the uncambered Joukowski airfoil cor-

responding to the B5 thickness mode at the angle of attack Al

B B

-1 1 1
A, =tan G—) = )
1 21122 Zu22

appropriate to the flat plate camber mode B, is used. This basic

1

nose flow velocity a4iN is given by Riegels (14) as

.y cosA, [ (1+e)sinei-€sm29i}+51nA1(1 -cosei)(l -2€cos Gi)

g T
N 22 [sinzeiJre2(cosei-coszei)2]€

€= Zuzz

)
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Because the five remaining modes are regular at the slat
leading edge, the parallel components of their induced velocity fields
on the chord line can be included as perturbations to this basic nose
flow solution. The total velocity 4514 OB the upper surface of the slat

nose in the slat plane is then given by

= + 1 -
q. 4N B smei B

i16 2 sin zei+ B

sin30. - B, cos20,.+B._cos30.
1 1 1

3 4 6 7

The excellent inherent accuracy of this technique for obtaining
a higher order approximation to the nose flow on an airfoil in a uni-
form onset flow is thoroughly discussed by Allen. As discussed
earlier in this section, additional approximations for the non-uniform
main flow and image slat field are introduced into this semi-inverse
solution to linearize the slat shape integration. To a first order of
approximation, the influence of the onset flow cur\}ature on the slat
loading was removed by including the normal components of the main
and image flow fields in the expression for the local slat surface
slope. However, higher order effects of the flow curvature and the
influence of the small variations of the parallel flow component from

the midchord value u.z2 have not been taken into account.

G. Mappings from Slat Plane to Ellipse Plane

The slat ordinates (s; t = Ve y7) obtained by integration in
the slat plane can be mapped to the ellipse plane using the following

transformation sequence. The mapping from the slat plane S = s+it

to the half-plane W = x3 + iy3 is
c -ik
_, 2 6 .
W-(—-4—)Se +f2+1f1
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and can be expressed as

2 €2
Xy = (T) (k7s + k8t)+f2 Y3 = (T) (kot - k85)+f1
The mapping derivative !dS/dW' = 4/c2 is defined as M3.

From the half-plane to the circle plane z = x5t iyz, the

mapping is

(W+i)
3 'W-i

Z = C

This transformation can be written in the form

2 2
- c3(x3+ Y3 ~-1) ;- 2.(:3x3
2 2 3 27 2 2
x3+ y3-2y3+1 x3+y3 -2y3+1

The corresponding mapping derivative M, = |dz/dW | is given

2 2 2,,.2 2.2
[(x3~y3+2y3 - 1) +4x3(y3-1) ]

Finally, the Joukowski transformation to the ellipse plane

Z ::x1+1yl is

Z =z +

€7
4z
4(x +y§) 1 2 (xg-}-yg')
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The mapping derivative |dZ/dz| is designated M,

C

7
M, = i1 -
1 l 4z2 ,
3
2 2.2 2
‘{[1-c7(xz—y2)] + (2c7x2y2) }
M, = Z 72 2

In terms of the three mapping derivatives and a flow speed

q., 4 in the slat plane, the flow speed q.,, at the corresponding point
il4 P p i1l P gp
in the ellipse plane is

( M3 )
q. il Gy syl B R
ill Mle i1 4

For an onset flow velocity, U, of unity in the ellipse plane,

the pressure coefficient Cp defined as
i

P-P_
C = —
Pi (p/2)U
is given by
_ 2
Cp. =1 -4

1
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III. THE SEMI-INVERSE SLAT DESIGN TECHNIQUE

A. Selection of Slat Location in Half-Plane

Using the analysis presented in Part II, a digital computer
program can be written which will rapidly generate a slat which
induces a velocity field that closely matches the specified modulating
velocity distribution on the ellipse. Trial solutions utilizing this
semi-inverse slat design technique were conducted on the California
Institute of Technology's time-sharing computer system. As de-
scribed below, the selection of the slat location introduces an element
of judgement into the solution, and therefore the direct operator
interaction with the solution which the time-sharing system affords
was very useful. For the test cases, the desired pressure distribu-
tion was specified directly on the ellipse because, as discussed in
Part I, the specified flow on an arbitrary airfoil can be mapped
through the circle plane to the ellipse plane. The ellipse thickness
ratio and angle of attack were selected to provide a realistic model
of the flow environment in which a slat for a thin airfoil must operate.
A description of the technique used for the trial semi-inverse solu-
tions follows. |

The initial step in the solution was the calculation of the
modulating velocity W which the slat must induce at the matching
station h.1 on the real axis in the half-plane. The critical high velocity
region on the upper nose surface of the ellipse corresponds to the
segment of the R(W) axis just to the right of the origin, and therefore
closely-spaced matching stations were designated in this region.

Using the successive transformations from the half-plane to the
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ellipse plane which are given in Part II, Section G, the ellipse station

(Xil’ Yil) corresponding to each hi was determined. The pressure

coefficient C_ at each of these stations was obtained from a graph of
i
the specified pressure distribution on the ellipse. For an onset flow

velocity of unity, the specified velocity d;18 On the ellipse is

=

Employing the mapping derivatives M, = |dz/dW | and
1\/11 = IdZ/dz’, the specified velocity in the half-plane is defined as
W4 = MlM

2918 The main flow velocity at hi on the R(W) axis is

designated W, and the specified modulating velocity W is then

3
given by Wio SW. 4 = Wia

Selection of the slat location in the half-plane is the next major
step of the semi-inverse solution. A fundamental characteristic of
this slat design technique is that the fine modulation of the slat-induced
velocity field is accomplished by adjusting the singularity distribution
on the fixed slat chord line rather than by altering the position of a
slat of fixed camber and thickness. An approximate specification of
the slat location is therefore adequate, because the least squares
solution for the seven singularity distribution mode coefficients BI
performs the fine matching to the specified modulating velocity dis-
tribution. For a set of slat locations within a local region of the
half-plane, this semi-inverse solution will generate a class of slats

of varying shape, all of which have induced velocity fields that closely

match the desired induced field.
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The insight required for the proper initial selection of the
slat location parameters (fl, fz) and the slat chord cy is obtained by
comparison of the graph of the distribution of the specified modulating
velocity along the R(W) axis with the characteristic influence coeffi-
cient curves shown in Figure 6.

For typically small slat inclinations, the peak induced veloci-
ties for the singular Bl and reflexed B3 camber modes occur under
the slat quarter chord, and the flow induced by the regular B2 camber
mode reaches a maximum under the slat midchord. Therefore, the
slat offset from the origin, fz, is selected to place the peak of the
specified modulating velocity curve between the slat mid- and quarter-
chord points. The appropriate slat chord and height f1 are estiﬁlated
from the width, the height-to-width ratio, and the tailoff slope of the
specified modulating velocity curve.

The small matrix inversion required by the least squares
matching can be completed extremely rapidly by the digital computer.
The mode coefficients BI selected by an initial solution can therefore
be used as qualitative indicators for the selection of improved slat
geometry parameters (CZ’ fl’ fZ)' For example, the loading of the
slat trailing edge which is indicated by a negative reflex camber
coefficient B3 suggests that the slat offset fz should be increased.

A relatively large third regular camber mode coefficient B4 loads
both ends of the slat, thus broadening the induced field, and indicates
that the initial slat chord c, was too small. After a series of trial

solutions to gain experience with the technique, the appropriate altera-

tions of the slat geometry parameters become quite evident,
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The loading distribution on the slat can be favorably influenced
by the proper choice of slat location. The singular camber mode B1
contributes a sharp pressure peak at the slat leading edge which may
induce boundary layer separation on the slat. If an initial inversion
solution yields Bl > BZ’ a decrease in slat offset f2 is indicated. A
second inversion solution will then favor the distributed loading of
the first regular camber mode BZ’ which is symmetric about the slat

midchord.

B. Positive Slat Thickness Constraint

In the least squares solution described in Part II, Section D,
no sign constraint was placed upon the camber and thickness mode
coefficients BI' As is apparent from the graphs of the influence
coefficients (Figure 6), positive values of the primary and first regu-
lar thickness mode coefficients, B5 and B(), induce positive velocities
on the half-plane surface under the slat. Slat thickness thus increases
the velocity past the ellipse nose. Because the purpose of the slat is
to decrease the nose velocity by contributing a strong negative flow
component, this detrimental effect of slat thickness must be counter-
acted by increased backflow induced by additional positive camber
on the slat. From the design standpoint, therefore, slat thickness
should be reduced as far as is permitted by considerations of slat
structural strength and of slat nose Cp which becomes increasingly
negative with decreasing slat nose radius.

During some initial solutions for the slat shape mode coeffi-

cients, negative values for the B5 and B6 thickness mode coefficients
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were obtained. For these cases, to match the particular specified
modulating velocity distribution, the unconstrained inversion solution
employed the backflow field induced by negative thickness terms as
well as the negative velocity field induced by the positive camber
modes. The computer program was therefore modified to constrain
the slat shape solutions to physically realizable positive thickness
cases.

The program was rewritten to allow completion of the matrix
inversion in the least squares solution using either the full seven by
seven influence coefficient product matrix A or a four by four matrix
containing only the terms corresponding to the four camber modes.
This modification provided the alternative of a restricted matching
solution employing only the one singular and three regular camber
distributions.

If the initial unconstrained inversion solution for the seven
mode coefficients yielded a negative value for the primary thickness
mode coefficient B5, a constrained solution was then performed.
First, the program demanded that the minimum acceptable slat
thickness distribution be specified in terms of the three thickness
mode coefficients. The induced velocity field corresponding to this
specified slat thickness distribution was then calculated., Next, a
restricted slat inversion solution was conducted to select the four
camber coefficients required for cancelling this thickness-induced
field in addition to matching the specified modulating velocity distri-

buticn.
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For these cases requiring constrained solutions, the mini-
mum acceptable slat thickness distribution is specified as a super-
position of the BS’ Bé, and B7 thickness modes. As discussed in
Part II, Section F, the slat thickness in the slat plane is a linear
function of the mode coefficients and the parallel velocity component

u,5 along the chord line. For the primary thickness mode alone,

the maximum thickness to chord ratio for the slat is

Tg = .65 B5/u22

Using the fifth mode influence coefficients U and the slat
plane to half-plane mapping derivative 4/c2, the offset velocity W. e
corresponding to this prescribed slat thickness can be calculated
at each matching station

W.o = (8/CZ)B5uiS = (8/c,) 1. 54 TEU, o0

The specified modulating velocity w.o is defined as the differ-
ence between the specified velocity W4 and the main flow velocity

w5 at hi in the half-plane

W., =W

i2 - W

i4 i3

The biased specified modulating velocity w’i2 is defined as

the specified modulating velocity minus the offset velocity induced

by the prescribed slat thickness distribution,

w'., E w,
i2 i

4~ Wiz " W5
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A restricted inversion solution for the four camber mode
coefficients required to match this biased specified modulating
velocity distribution can be conducted. The total slat-induced velocity
Wi corresponding to these camber mode coefficients plus the pre-
scribed thickness mode coefficients will then match the specified

modulating velocity w.,. For the slat 70 test case, the half-plane

velocities w.

, W.,, and the biased w!, are shown in Figure 10.
il i2 i2

C. Iteration Loop Required to Maintain Kutta Condition on Ellipse

Because of the small increment of compensating vorticity ]_"C

which is required to maintain the Kutta condition on the ellipse when
a slat is added, an iteration on the least squares solution is necessary
to achieve an accurate matching to the specified velocity distribution
on the ellipse. Initially, the velocity distribution on the unslatted
ellipse is calculated by assuming that the total ellipse circulation Ft
is the basic vorticity FO required to null the crossflow at the trailing
edge. For the first least squares solution, the specified modulating
velocity W o is defined as the difference between the specified velocity
W4 and the initial value of the main flow velocity Wi corresponding
to the circulation ]."t = TO. However, the addition of the slat vorticity
I‘s required to match this specified modulating velocity distribution
increases the total ellipse circulation to I"t = TO + rc. As a result,
the final velocity on the ellipse nose will be somewhat higher than
the specified velocity.

| A revised distribution of specified modulating velocity W'l’2 =

W +Awi2 is then obtained using a revised value of the main flow
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velocity W‘l‘4 =wo,t Awi4 corresponding to the increased total ellipse
circulation. The slight increase in slat circulation F's = TS + Al"s
that is required to match the increase in the specified modulating
field will in turn necessitate an additional increment of compensating

vorticity, ATC, thus further increasing the total circulation to I'”t.
1=
Tt TO + I‘C + AI‘C

This iteration can be continued until the additional increments
of circulation are insignificant with respect to the other approxima-
tions in the solution.

For realistic slat cases, the initial compensating vorticity
increment I‘C is not more than a few percent of the basic ellipse
circulation FO’ and the iteration converges extremely rapidly. The
compensating vorticity for the typical slat 70 test case is only six

tenths of a percent of the basic circulation.

D. First Order Correction to Slat Inclination

During the initial semi-inverse solutions, it was observed that
the slat shapes generated by the linearized integration were offset
significantly from the assumed position of the singularity distribution
along the real axis in the slat plane. This offset was primarily due
to the relatively large component of the reflex camber mode B,
selected by the least squares matching in order to concentrate the
slat vorticity near the quarter chord. Referring to page 41, the

angular offset contributed by the reflex camber mode is designated
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A3 and is the angle of zero lift for this mode. The singular or flat
plate camber mode B1 also contributes an increment Al to the net
angular offset of the slat mean line.

A first order correction for this angular offset can be readily
incorporated in the solution. An initial least squares inversion is
conducted with the slat angle k6 conventionally defined to align the
slat midchord parallel to the main flow. Using the mode coefficients
B1 and B3 from this initial inversion, the two angular offsets Al
and Aj can be calculated. The slat angle is then redefined as the

original slat inclination plus the two offsets.
i =
Kp =Ko T A7 A5

A second least squares matching is conducted using the rede-
fined slat angle ké' The increase in slat inclination slightly displaces
the singularities on the forward half of the slat away from the match-
ing stations on the real axis of the half-plane. Therefore, the second
inversion solution will select slightly higher camber mode coefficients
to match the specified modulating velocity. As a result, a small
residual offset of the slat mean line will remain after the first order
correction. Higher order corrections to reduce the offset between
the assumed position of the singularities and the geometric meﬁn line
of the generated slat to less than half the slat thickness would be
inconsistent with the basic thin airfoil approximations in the slat

analysis.
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E. Slat Design Example: Slat 70

As a difficult test case for this semi-inverse slat design
technique, an ellipse with a nose radius of one percent of chord, a
typical Ry for a high-speed airfoil, was chosen. A lift coefficient
of 2.12 at an angle-of-attack of . 3 radians or 17.2° was selected
as representative. Without a leading edge slat, this 14. 1% thick
ellipse would, in theory, develop an absurd nose pressure coeffi-
cient C = -21.8.

nose

The specified pressure distribution for the slat p70 test case
is shown in Figure 11. This distribution incorporates the general
characteristics of a desirable nose pressure gradient but is not
intended to represent a separation-free distribution for a particular
full-scale airfoil. A minimum pressure coefficient of approximately
minus nine was selected as a realistic limit for low-speed operation
of a thin airfoil at a moderate lift coefficient. Because the boundary
layer at the nose is typically laminar, a mild pressure gradient
similar to the moderate initial slope of this specified distribution
is required to avoid development of a separation bubble. Behind
the suction peak, the steady decrease of the adverse pressure
gradient as exhibited by this specified distribution is a necessary
condition for maintaining unseparated laminar flow. Beyond the
predicted transition point for a particular airfoil, a considerably
more severe adverse pressure gradient could be specified.

For the slat 70 design example, a constrained semi-inverse
solution was required. A representative minimum acceptable

thickness distribution was specified, and a restricted inversion
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solution for the camber mode coefficients was then conducted. The
prescribed value of the primary thickness mode coefficient corres-

ponded to a slat thickness ratio 7. = .1 in the slat plane. In

5
addition, to increase the slat thickness between the midchord and

the trailing edge, a negative B, thickness mode coefficient equal

7
in magnitude to twenty percent of the B5 mode coefficient was also
specified.

The pressure distribution calculated by this semi-inverse
solution for the nose of the ellipse with slat $70 is shown in Figure
11. The location of the matching stations along the ellipse chord,
the specified pressure coefficients at these stations, and the pressure
coefficients achieved with the semi-inverse solution are given in the
Appendix. The very close agreement between the specified and
solution pressure distributions is typical of the accurate matching
which can be achieved with this semi-inverse design technique once
an appropriate slat chord location in the half-plane has been
selected. Although the pressure distribution over the first five
percent of the ellipse chord is drastically altered by the addition
of slat p70, the forward stagnation point is shifted only half a percent
of chord from its original position near the nine percent chord
station on the lower surface of the ellipse.

The distributions of the specified modulating velocity w,

2

and the biased specified modulating velocity W‘i in the half-plane

2
are shown in Figure 10. For the prescribed slat thickness distri-

bution, the maximum offset between LEp) and W'iz is approximately

twenty percent. Even for this very thin slat, the adverse velocity
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field induced by the slat thickness is significant. The distribution
of slat-induced velocity Wiq which was achieved with the semi-
inverse solution for slat 70 is also plotted in Figure 10.

In the slat plane, slat 70 has the shape shown in Figure 12.
Because of the slight curvature of the main flow in the S plane, the
effective camber of the slat is somewhat greater than is apparent
from this illustration. In this plane, the large reflex component
of the slat camber distribution is evident. After the first order
correction to the slat inclination, the maximum residual offset
between the geometric mean line of the slat and the line of singu-
larities on the R (S) axis is approximately equal to the slat thickness.

The ellipse plane configuration for slat g70 is illustrated in
Figure 13. Measured in percent of the ellipse chord, the ellipse
nose radius is one percent, the slat standoff from the nose is
approximately two percent and the slat chord is five percent. As
shown in Figure 11, this small slat close to the ellipse nose is very
effective in reducing the extreme nose suction peak of the unslatted
ellipse.

For the slat itself, the pressure distribution computed by
the approximate method outlined in Section F of the Analysis is
plotted in Figure 14. A suction peak of minus fifteen is predicted
immediately behind the slat nose, and the pressure coefficient is
more negative than the ellipse nose limit of minus nine over the
forward half of the slat. The loop in the upper and lower surface
pressure coefficient curves near the trailing edge is a result of the

strong reflex component of the slat camber distribution. Because
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of the cusped trailing edge, the slat lacks a rear stagnation point.

For a specific full-scale design case, a slat boundary-layer
analysis following the semi-inverse solution is required to determine
whether the slat pressure distribution is acceptable. If necessary,
the slat loading can be altered by selecting modified slat geometry
parameters as discussed in Section A of this part. In addition, for
restricted semi-inverse solutions, the prescribed thickness distri-
bution on the slat can be modified to improve the pressure distribu-
tion.

F. Comparison with Douglas-Neumann Direct Solution.

For the slat p70 configuration, the flow solution calculated
by this semi-inverse technique was compared with the Douglas-
Neumann direct potential flow solution (5).

On the ellipse nose, the agreement between the direct and
semi-inverse solutions is good. As illustrated in Figure 11, the
maximum difference between the two solutions is approximately
four percent.

However, on the slat the pressure coefficients predicted
by the direct and semi-inverse solutions diverge somewhat at both
the leading and trailing edges. Near the slat nose, the smoother
pressure distribution from the Douglas-Neumann solution can be
assumed to be the most accurate., A higher order approximate
solution for the slat nose in a non-uniform onset flow is apparently
required. At the slat trailing edge, the pressure distribution pre-
dicted by the semi-inverse solution is more accurate because the

Douglas-Neumann solution is inherently unable to treat the cusped
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slat trailing edge exactly. The scatter in the direct solution Cp
values near the trailing edge is a characteristic result of attempts
to treat the cusped trailing edge case with the Douglas-Neumann

program.
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IV. CONCLUSIONS

The semi-inverse design technique described in this thesis
will generate a leading edge slat which will induce the modulating
field required to match a specified pressure distribution on the nose
of an ellipse. The digital computer program for the semi-inverse
solution is straightforward and can be executed rapidly. After a few
initial semi-inverse solutions for a particular design case, the
most appropriate choice of slat chord 1o‘cation in the half-plane is
apparent. The ellipse nose flow calculated by the semi-inverse
solution agrees well with the flow predicted by the Douglas-Neumann
direct solution for the slat geometry generated by the semi-inverse
technique.

Several significant qualitative insights into the slat design
problem were obtained from the solutions conducted using this semi-
inverse technique. On a thin airfoil with a severe suction peak at
the nose, a small, highly cambered slat close to the leading edge is
desirable. For an efficient slat design, the slat vorticity should be
concentrated near the region of the airfoil nose which requires the
highest modulating backflow. Because the main flow streamlines
near the nose of a heavily loaded airfoil are strongly curved, an
efficient slat which will lie approximately along one of these zero
order streamlines will be very highly cambered. Even for thin
slats, at efficient standoff-to-chord ratios the adverse velocity field
induced by the slat thickness components is of the same order as

the backflow field induced by the camber components and must be
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compensated for by additional slat vorticity. At a typical slat
standoff ratio of one-half, the flow on the airfoil nose is quite
sensitive to the details of the distribution of camber and thickness
along the slat chord line.

From the insight provided by the semi-inverse solutions,
it is apparent that the alternate trial-and-error approach to slat
design by a sequence of direct solutions is unattractive. The
sensitivity of the airfoil nose flow to the slat camber and thickness
distributions precludes experimental "optimization' of a slat
design. A prohibitively large number of models would be required
to adequately cover the full range of slat shape parameters. Simi-
larly, a very extensive series of direct numerical solutions would
be necessary to determine by trial and error the slat shape and
position required to induce a specified modulating field.

The basic semi-inverse solution of this thesis can be ex-
tended into a slat design technique applicable to a general airfoil.
The appropriate numerical technique for mapping an arbitrary
airfoil to the circle plane must be incorporated into the slat design
program. In addition, approximate laminar and turbulent boundary-
layer calculations can be included to compute the specified pressure
distribution on the airfoil nose. After the semi-inverse solution
has generated a slat, the boundary-layer analysis subroutine can
be used to determine whether the slat boundary layer can tolerate

the imposed pressure distribution. A higher order approximate
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solution for the slat nose flow will be required for accurate pre-
diction of the slat boundary-layer behavior. By extending the basic
semi-inverse solution in this manner, a semi-inverse solution
which is directly applicable to practical slat design problems can

be obtained.
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Figure 8. Slat Mode Shapes in Uniform Onset Flow
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Figure 11. Pressure Distribution on Ellipse Nose
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APPENDIX

Parameter Values for Slat 370 Solution Slat Geometry

Chord Cy = - 16
Height f1 = .07
Offset fZ = .05
Angle k6 = .329 (including first order correction)
Camber Mode Coefficients

Bl = 2.05 X lO‘2
B2 = 3.35X 10_2
B, = 2.79x 107°

-4
B4-- 7.93 x 10

Prescribed Thickness Mode Coefficients
B, = 1.79 X 1072

= 0
B
-3
B, = -3.57 %10
7
Flow at Slat Midchord

Parallel component of main flow field U = - 127
Parallel component of image slat field ug = - 011

Inclination .178
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TABLE 1
Pressure Coefficients at the Matching Stations on

the Ellipse - Slat 370

Matching Ellipse Specified Solution
Station Chord Pressure Pressure
Index Station Coefficient Coefficient

! *i1 Pig Pi12

1 -2. 0000 -7.9796 -7.9583
2 -1.9987 -8. 7529 -8.7122
3 -1.9973 -8. 8843 -8.8393
4 -1.9951 -8. 9092 -8. 8655
5 -1.9923 - 8. 8411 -8. 8053
6 -1.9896 -8. 7460 -8.7201
7 -1.9866 -8.6275 -8.6130
8 -1.9832 -8. 4936 -8. 4907
9 -1. 9794 - 8. 3492 - 8. 3558
10 v -1.9746 -8.1742 -8.1869
11 -1.9700 -8.0131 -8. 0252
12 -1.9604 -7.6939 -7.6879
13 -1.9522 -7.4314 -7.3993
14 . -1.9432 -7.1576 -7.0971
15 -1.9284 -6.7380 -6. 6495
16 -1.9120 -6.3246 -6.2329
17 -1. 8940 -5.9288 -5. 8475
18 -1.8798 -5.6529 -5,5810

19 -1. 8462 -5,.0982 -5. 0436
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TABLE 1 (Cont'd)

Ellipse Specified
Chord Pressure

Station Coefficient
%31 Pig

-1. 8073 -4, 5919

-1, 7647 -4,1560

-1.6697 -3.4633

Solution
Pressure
Coefficient

Pi12
-4. 5496

-4.1218

-3.4391



